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Haining Lin, Brieanne Vaillancourt, Rajandeep S. Sekhon, Natalia de Leon,  
Shawn M. Kaeppler, Ning Jiang, and C. Robin Buell*

Abstract
Transcriptome sequencing is a powerful method for studying 
global expression patterns in large, complex genomes. 
Evaluation of sequence-based expression profiles during 
reproductive development would provide functional annotation to 
genes underlying agronomic traits. We generated transcriptome 
profiles for 12 diverse maize (Zea mays L.) reproductive tissues 
representing male, female, developing seed, and leaf tissues 
using high throughput transcriptome sequencing. Overall, 
~80% of annotated genes were expressed. Comparative 
analysis between sequence and hybridization-based methods 
demonstrated the utility of ribonucleic acid sequencing (RNA-seq) 
for expression determination and differentiation of paralagous 
genes (~85% of maize genes). Analysis of 4975 gene families 
across reproductive tissues revealed expression divergence is 
proportional to family size. In all pairwise comparisons between 
tissues, 7 (pre- vs. postemergence cobs) to 48% (pollen vs. ovule) 
of genes were differentially expressed. Genes with expression 
restricted to a single tissue within this study were identified with 
the highest numbers observed in leaves, endosperm, and pollen. 
Coexpression network analysis identified 17 gene modules 
with complex and shared expression patterns containing many 
previously described maize genes. The data and analyses in this 
study provide valuable tools through improved gene annotation, 
gene family characterization, and a core set of candidate genes 
to further characterize maize reproductive development and 
improve grain yield potential.

MAIZE (Zea mays L.) is an important crop worldwide 
in terms of both grain and stover production with 

approximately 36 million ha grown in 2010 within the 
United States (USDA and NASS, 2011). As demands for 
corn yield are expected to increase for food, feed, and 
biofuel production (Godfray et al., 2010), a combination of 
genetic and genomic resources will be needed to elucidate 
the underlying genes and deploy preferred alleles into 
improved varieties. Several large e!ect mutations a!ecting 
reproductive development have been identi"ed in maize 
including those involved with sexual di!erentiation, #o-
ral branching, and seed maturation (Acosta et al., 2009; 
Bortiri and Hake, 2007; Gallavotti et al., 2010; Suzuki 
et al., 2003). In spite of this, little is known about global 
transcriptional networks across unique #oral and seed 
organs that potentially contribute to complex, multilocus 
traits. Genomic strategies for maize reproductive studies 
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are now feasible with the recent release of the improved 
version 2 (v2) maize reference genome and gene annota-
tion (Schnable et al., 2009). However, there are signi"cant 
challenges in analyzing the maize gene set, which is rich in 
duplicated genes. A deeper understanding of how to evalu-
ate global gene expression patterns in maize reproductive 
tissues would enhance the utilization of the maize genome 
and complement our current understanding of the genetic 
and molecular basis of maize reproduction.

Previous large-scale expression pro"ling studies in 
maize have been performed with multiple oligonucleotide 
microarray platforms (Barr et al., 2010; Gardiner et al., 
2005; Hayes et al., 2010; Liu et al., 2008; Sawers et al., 2007; 
Sekhon et al., 2011; Skibbe et al., 2009; Wang et al., 2010; 
Zheng et al., 2010; Zhu et al., 2009). $ese arrays are lim-
ited to measuring known sequences and thus cannot fully 
sample the transcriptome. Recent advances in sequencing 
technology have led to improved methods for expression 
pro"ling through ultrahigh throughput sequencing of mes-
senger ribonucleic acid (mRNA). $e RNA-seq method of 
whole transcriptome pro"ling involves converting mRNA 
into complementary DNA (cDNA), which then is sequenced 
in a massive and parallel manner involving short reads of 
36 to 150 bp (Wang et al., 2009b). Short read mapping algo-
rithms (Langmead et al., 2009; Trapnell et al., 2009) and the 
ability to convert millions of mapped reads to normalized 
expression values relative to annotated or unannotated gene 
models (Trapnell et al., 2010) allow for robust expression 
estimates in organisms with sequenced genomes. $us, not 
only does RNA-seq data provide detailed expression pheno-
types for genes but it also is informative for improving the 
quality of gene model annotation.

$ough a few RNA-seq studies in maize have been 
completed (Eveland et al., 2010; Li et al., 2010; Wang et al., 
2009a), none have thoroughly examined diverse repro-
ductive tissues. To explore the maize reproductive tran-
scriptome, we generated 10.5 Gbp of whole transcriptome 
sequence from 12 reproductive tissues from the reference 
B73 maize inbred line that represent male, female, and 
developing seed tissue types as well as leaves to provide a 
contrasting tissue. $e transcriptomes of these diverse tis-
sues represent 31,239 genes (79.2%) from the maize v2 anno-
tation (Maize Genome Sequencing Project, 2011; Schnable 
et al., 2009). We have analyzed these data in the context 
of gene family expression, di!erential expression, tissue 
restricted expression, gene coexpression networks, and 
network relationships to previously characterized genes and 
genes of unknown function. $is dataset and subsequent 
analyses provide an invaluable source of information for 
the community including gene family classi"cation, tissue 
speci"c transcriptional networks, and candidate genes for 
targeted work in improving maize grain yield.

Materials And Methods

Plant Materials and RNA Isolation
Plants of the reference maize genotype, B73, were grown 
under "eld conditions at an average density of 37,000 

plants ha 1 in East Lansing, MI, during the summer of 
2009. $e soil type at this location is Marlette "ne sandy 
loam, 2 to 6% slopes. Before planting, fertilizer 19–19–19 
N–P–K was applied at a rate of approximately 454 kg ha 1. 
Five weeks a%er emergence, one tablet of slow release fer-
tilizer (15–11–8, Osmocote plus, Scotts, Marysville, OH) 
was applied to each plant. $irteen tissues described in 
Table 1 were harvested and immediately frozen in liquid 
N. An independent sample of leaf tissue grown under 
growth chamber conditions (26/24°C day/night tempera-
tures and 12 h photoperiod) was harvested to assess the 
repeatability of the data. Total RNA was isolated using 
a modi"ed hot phenol method. One gram of tissue was 
ground with liquid N and immediately transferred into 
a mixture of prewarmed phenol (pH 4.3) and extraction 
bu!er (100 mmol LiCl, 100 mmol Tris pH 8.5, 10 mmol 
ethylenediaminetetraacetic acid, 1% sodium dodecyl sul-
fate, and 15 mmol dithiothreitol), vortexed, and incubated 
at 60°C for 20 min. Chloroform:isoamyl alcohol (24:1) 
was added and the mixture was vortexed and centri-
fuged at 11,000 rpm for 10 min at 4°C. $e aqueous phase 
was transferred into phenol:chloroform:isoamyl alcohol 
(25:24:1), vortexed, and centrifuged at 11,000 rpm for 10 
min at 4°C. $e previous step was repeated twice with 
phenol:chloroform:isoamyl alcohol (25:24:1) and twice 
with chloroform:isoamyl alcohol (24:1). $e RNA pellet 
was precipitated with 4 M LiCl, washed with 70% ethanol, 
and dissolved in diethylpyrocarbonate water. Genomic 
DNA was removed by deoxyribonuclease (DNase) treat-
ment using the DNA-Free kit (Ambion, Austin, TX). RNA 
quantity was determined using a Nanodrop ($ermo Sci-
enti"c, Wilmington, DE), and RNA quality was checked 
using an Agilent bioanalyzer (Agilent Technologies, Santa 
Clara, CA).

RNA Sequencing Library Construction  
and Illumina Sequencing
Approximately 5 to 10 μg of total RNA was used for 
construction of each RNA-seq library. Polyadenylated 
RNA puri"cation, RNA fragmentation, cDNA synthesis, 
and polymerase chain reaction (PCR) ampli"cation was 
performed according to the Illumina RNA-seq proto-
col (Cat # RS-100-0801, Illumina, Inc., San Diego, CA). 
Parallel sequencing was performed using an Illumina 
Genome Analyzer II (Illumina, Inc., San Diego, CA) at 
the Research Technology Support Facility at Michigan 
State University (East Lansing, MI) and the Institute for 
Genome Sciences at the University of Maryland School 
of Medicine (Baltimore, MD). Single-end sequence reads 
between 35 and 40 bp were generated, and RNA-seq read 
quality was evaluated based on the Illumina purity "lter, 
percent low quality reads, and distribution of phred-like 
scores at each cycle. All data presented passed the quality 
control "ltering based on these metrics. Sequences are 
available in the Sequence Read Archive at the National 
Center for Biotechnology Information (Sequence Read 
Archive study number SRP006463; NCBI, 2011).
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RNA Sequencing Data Analysis

Sequence reads for each tissue sample were mapped to 
v2 of the B73 reference genome (AGPv2; Maize Genome 
Sequence Project, 2011; Schnable et al., 2009), herea%er 
referred to as v2 pseudomolecules, using the quality and 
splice site aware alignment algorithms, Bowtie version 
0.12.7 (Langmead et al., 2009) and TopHat version 1.2.0 
(Trapnell et al., 2009) in conjunction with SAMtools ver-
sion 0.1.7 (Li et al., 2009). $e minimum and maximum 
intron length was set to 5 and 60,000 bp, respectively; all 
other parameters were set to the default values.

Normalized gene expression levels were calculated 
using Cu'inks version 0.9.3 (Trapnell et al., 2010) and 
are reported as fragments per kilobase pair of exon 
model per million fragments mapped (FPKM). $e 
maximum intron length parameter was set to 60,000 bp. 
A reference annotation was supplied based on the AGPv2 
5b "ltered gene set (Maize Genome Sequence Project, 
2011), herea%er referred to as v2 annotation, and the v2 
pseudomolecules were provided to permit the use of the 
bias detection and correction algorithm. $e quartile 
normalization option was used to improve di!erential 
expression calculations of lowly expressed genes. All 
other parameters were used at the default settings. Raw 
FPKM values for all tissues are provided (Supplemen-
tal Table S1). Cu'inks provides the upper and lower 
bound FPKM values for the 95% con"dence interval of 
the abundance of each gene. For summary statistics of 
the number of genes expressed in each tissue and genes 
with expression restricted to a single tissue within this 
study, a gene was considered expressed in a given tissue if 
the FPKM 95% con"dence interval lower boundary was 
greater than zero. If a gene had a lower boundary value 
greater than zero in only one tissue, that gene was classi-
"ed as having expression restricted to that tissue within 
this study. To evaluate the e!ect of sampling depth on 
expression estimates, 5, 10, and 15 million reads were 
randomly selected from the total pool of reads for all tis-
sues, and for tissues with su(cient reads, 20 and 25 mil-
lion reads were also selected.

Pearson product-moment correlation analyses of 
log2 FPKM values among RNA-seq libraries were per-
formed using PROC CORR with SAS version 9.2 (SAS 
Institute, 2003), and all log2 FPKM values less than zero 
were set to zero. Only tests signi"cant at p = 0.05 are 
shown. $e heat map of correlation values was clustered 
with hierarchical clustering using a Pearson correlation 
distance metric and average linkage, and bootstrap sup-
port values were calculated from 1000 replicate searches 
using Multiple Experiment Viewer So%ware (MeV) ver-
sion 4.5 (Saeed et al., 2003). Di!erential expression anal-
ysis was conducted using the cu!di! program within 
Cu'inks version 0.9.3 (Trapnell et al., 2010) utilizing 
the mapping results described above. For pairwise gene 
comparisons between two tissues, cu!di! "rst calculates 
the variance of the transcript abundance in each tissue 
accounting both for the variation across replicates and 

the uncertainty in the expression estimate based on map-
ping uncertainty. When replicates are not available, a 
Poisson distribution is assumed, and the variation of the 
count across replicates is equal to the mean of the count. 
$e variance for a gene’s abundance is then determined 
using the variance in abundance for each isoform of that 
gene. $e test statistic T is calculated as the log of the 
ratio of FPKM values for the two tissues divided by the 
variance of the log of the ratio. A two-tailed Student’s t 
test is then used to determine if genes are di!erentially 
expressed. For additional information on how the dif-
ferential expression test is conducted see Trapnell et al., 
2010. $e minimum number of alignments at a gene 
required to test was set to 100. Quartile normaliza-
tion and a false discovery rate of 0.01 a%er Benjamini-
Hochberg correction for multiple testing were used. $e 
v2 pseudomolecules and v2 annotation were provided as 
input parameters. All other parameters were used at the 
default levels.

Wiggle tracks were generated to visualize read cover-
age across the genome using the wiggles program within 
TopHat version 1.2.0 (Trapnell et al., 2009). $e wiggle 
tracks were displayed on the Integrated Genome Browser 
version 6.4.1 (Nicol et al., 2009) using the GFF "le for the 
v2 annotation from maizesequence.org (Maize Genome 
Sequence Project, 2011).

Table 1. Descriptions of maize tissues used in this study.

Tissue name† Tissue description Time of harvest
Leaves
Leaves (V2) Pooled leaves 20 d after sowing
Female
Preemergence cob (V15) Immature cob 10 d before cob 

emergence
Postemergence cob (VT) Whole cob Silk emergence
Silk (R1) Mature silk Anthesis
Ovule (R1) Mature ovule with stigma and 

style removed
Anthesis

Male
Preemergence tassel (V18) Post meiotic whole tassel 

including anthers
10 d before tassel 

emergence
Postemergence tassel (VT) Post meiotic whole tassel 

including anthers
Tassel emergence from 

whorl
Whole Anthers (VT) Whole anther including  

pollen dissected from tassel 
structural tissue

Anthesis

Pollen (VT) Mature pollen Anthesis
Seed
Seed 5 DAP‡ (R1) Whole seed 5 DAP
Seed 10 DAP (R2) Whole seed 10 DAP
Embryo 25 DAP (R4) Developing embryo 25 DAP
Endosperm 25 DAP (R4) Developing endosperm 25 DAP
†Vegetative (V) and reproductive (R) growth development stages defined in the Iowa State University 
Extension Corn Field Guide (Abendroth et al., 2011).
‡DAP, days after pollination.
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RNA Sequencing and Microarray  
Comparative Analyses

For correlation analyses of RNA-seq to microarray, gene 
expression data from an extensive maize developmental 
tissue atlas (Sekhon et al., 2011) was used. Because this 
microarray data set was analyzed against version 1 (v1) 
of the reference genome (Schnable et al., 2009), FPKM 
values for the 13 tissues in this dataset were determined 
using the v1 pseudomolecules (Mazie Genome Sequence 
Project, 2011) and the 4a.53 "ltered gene set (Maize 
Genome Sequence Project, 2011), herea%er referred to as 
v1 pseudomolecules and v1 annotation, with the same 
parameters as described above. For the RNA-seq to 
microarray comparative analysis only, genes with more 
than one predicted isoform were removed from both 
RNA-seq and microarray datasets. $e remaining genes 
present in both datasets were used for downstream anal-
yses. $e FPKM values and probe intensities were log2 
transformed, and Spearman rank correlations were per-
formed using PROC CORR (SAS Institute, 2003). Only 
tests signi"cant at p = 0.05 are shown. Spearman rank 
correlations, rather than Pearson correlations, were used 
due to the discrepancy in scale between the platforms.

Identification and Analysis of Paralogous  
Gene Families
Paralogous gene families were identi"ed by OrthoMCL 
(Chen et al., 2007; Li et al., 2003) with default parameters. 
To eliminate the situation where alternative isoforms of 
one gene are grouped in di!erent clusters, only peptide 
sequences of the representative gene models of the v2 
annotation were used. A representative gene model was 
de"ned as the gene model that produces the longest pep-
tide sequence among all alternative isoforms of a gene. 
OrthoMCL gene family assignments for all maize genes 
are provided (Supplemental Table S1). Pearson product-
moment correlations were performed for log2 FPKM 
values of all gene pair combinations within the same gene 
families using a custom java script, and a random dis-
tribution of Pearson correlation coe(cients (PCCs) was 
generated from correlations of 100,000 gene pairs not in 
the same gene family. $e heat map of FPKM values was 
generated with MeV version 4.5 (Saeed et al., 2003).

Gene Coexpression Network Analysis
Gene expression values from the 13 tissues in this dataset 
were used to generate gene networks and to identify mod-
ules of highly correlated genes using the weighted gene 
coexpression network analysis method (WGCNA) (Zhang 
and Horvath, 2005). All gene FPKM expression values were 
log2 transformed, and any log2 FPKM values less than 1 
were set to 0. Genes without variation across tissues were 
"ltered out using a coe(cient of variation (CV = σ/µ) cuto!; 
genes with a CV less than 1.0 were discarded from further 
network analysis. An R version 2.10.1 (R Development Core 
Team, 2011) implementation of the WGCNA was then used 
to identify gene modules (Langfelder and Horvath, 2008). 

Signed networks were constructed using Pearson correla-
tion values for all "ltered gene expression values. $e β and 
treecut parameters that are used within WGCNA were cho-
sen as 13 and 0.7, respectively. Eigengenes were calculated 
using the function moduleEigengenes within the WGCNA 
package (Langfelder and Horvath, 2007). Eigengenes are 
the "rst right-singular vector of the singular value decom-
position of the module expression data. $e heat map of 
eigengenes for each gene module was constructed using 
MeV version 4.5 (Saeed et al., 2003). Previously character-
ized maize genes that have been associated with the maize 
v2 annotation (Maize Genome Sequence Project, 2011; 
Schnable and Freeling 2011) were crossreferenced with the 
genes from each coexpression module.

Results And Discussion
Maize Tissue and RNA Sequencing  
Data Descriptions
$e tissues selected for RNA-seq pro"ling represent dif-
ferent organ types as well as samples of some tissues at 
multiple developmental time points. $e tissues used in 
this experiment represent four larger groups: male tis-
sues (pre- and postemergence tassels, whole anthers, and 
pollen), female tissues (pre- and postemergence cobs, 
mature silks, and ovules), seed tissues (whole seed 5 and 
10 d a%er pollination [DAP], embryo, and endosperm 25 
DAP), and a vegetative tissue (leaves) (Table 1). Leaves 
were included to provide a basis for comparison of repro-
ductive and nonreproductive tissue. $is dataset pro-
vides an in-depth survey of the maize transcriptome in 
reproductive tissues.

$e potential for biases in comparisons between the 
libraries was determined based on the total number of 
purity-"ltered reads, the percentage of reads mapped to 
the v2 pseudomolecules, and the relationship between 
read depth and tissue complexity as measured by the 
number of expressed genes. Purity "ltered reads ranged 
from 17.1 to 29.9 million reads per sample and the per-
centage of reads mapped per library ranged from 84.6 
to 90.6% (Table 2) indicating a similar performance of 
library construction and sequencing across the samples. 
In addition, no relationship was observed between num-
ber of genes detected as expressed and number of reads 
sampled across a range of tissues (Supplemental Fig. S1). 
Randomly selected subsets of the total pool of reads for 
each tissue ranging from 5 to 25 million reads were used 
to further evaluate the e!ect of sampling depth on gene 
expression detection (Supplemental Fig. S2). $e simula-
tion demonstrates a clear positive relationship between 
sampling depth and numbers of expressed genes at lower 
sequencing depths (5 to 15 million reads). $e number of 
expressed genes, however, begins to plateau at approxi-
mately 15 million reads, corresponding to the minimum 
sampling depth of all libraries in this study. To assess the 
repeatability of this data in an independent experiment, 
RNA from an additional leaf sample at approximately the 
same developmental time point as the "eld grown leaf 
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sample was also sequenced. $e correlation between the 
two leaf samples was R2 = 0.90 providing evidence for the 
repeatability of this dataset.

To further assess the quality of our datasets, we 
evaluated the expression of eight known genes with 
characterized expression patterns. As expected based on 
previous reports, opaque endosperm2 and shrunken-2 
were expressed nearly exclusively in the endosperm 25 
DAP tissue (Bhave et al., 1990; Schmidt et al., 1990), leafy 
cotyledon1 was expressed predominantly in the embryo 25 
DAP tissue (Lotan et al., 1998), NADP malic enzyme3 was 
highly expressed in the leaves (Ku et al., 1996), branched 
silkless1, although at low levels, was expressed in pre- and 
postemergence cob tissues (Chuck et al., 2002), male game-
tophyte speci!c1 and tassel serine threonine kinase1 were 
both highly expressed in all of the male tissues (Fu et al., 
2001; Hamilton et al., 1989), and waxy1 was expressed in 
endosperm 25 DAP, pollen, ovule, and #oral structures 
containing these tissues (Nelson and Rines, 1962) (Supple-
mental Table S2). $us, our tissues, resulting libraries, and 
expression sets are consistent with previous studies.

RNA Sequencing Transcriptome Profiles
Summary statistics revealed transcriptional diversity 
across reproductive tissues. In all tissues, the minimum 
FPKM values were zero while maximum FPKM values 
ranged from 17,256 in preemergence cob to 1,004,070 in 
pollen (Table 2). Intriguingly, phenotypically unique tis-
sues such as mature silk, pollen, and endosperm 25 DAP 
had the most extreme range of expression levels. Of the 
top "ve most highly expressed genes in pollen, two encode 
a pollen-speci"c protein C13 (GRMZM2G022347 and 
GRMZM2G317406), one encodes an arabinoglucan pro-
tein 6 (GRMZM2G175243), and the remaining two encode 
conserved genes of unknown function (GRMZM2G041448 

and GRMZM2G073155). Tissues with extreme maxi-
mum FPKM values were also extreme for other summary 
metrics. For example, pollen had the fewest number of 
genes expressed among all tissues with only 13,418 genes 
expressed (Table 2) consistent with a previous microar-
ray study that showed only 10,539 transcripts expressed in 
mature pollen (Ma et al., 2008). Similarly, within reproduc-
tive tissues, endosperm 25 DAP had the most genes with 
expression restricted to one tissue type, that is, genes with 
expression in only one of the tissues included in this study. 
In contrast to reproductive tissues, the leaf sample had the 
most genes overall with expression restricted to a single tis-
sue within this study (Table 2).

$ese di!erences in transcriptome pro"les were 
re#ected in correlation and cluster analyses among tissues 
(Fig. 1). Overall, PCC values ranged from 0.33 (leaves vs. 
pollen) to 0.97 (preemergence cob vs. postemergence cob). 
As expected, leaf tissue was poorly correlated with most 
reproductive tissues (PCC < 0.65) and showed the high-
est correlation with mature silks (PCC = 0.68). Among 
female tissues, the two stages of cob and ovule were all 
highly correlated with each other, and mature silk was 
more similar to developing seed than to female parts. Cor-
relations greater than 0.73 were observed among tassels 
and anthers, which is not surprising given that anthers 
were included in the tassel samples. Pollen had the most 
unique transcriptome with PCC < 0.5 in all comparisons 
to nonmale tissues. Finally, among seed tissues, the early 
development stages (whole seed 5 and 10 DAP) showed 
high correlation to each other (PCC = 0.95) but lower cor-
relations to endosperm 25 DAP (PCC = 0.78 and 0.80) 
and to developing embryo (PCC = 0.74 and 0.75). Interest-
ingly, the relatively high correlations observed among cob, 
seed, ovule, and embryo tissues (PCC > 0.80) indicate a 
substantial subset of shared gene expression patterns in 

Table 2. Read mapping and expression summary for 13 maize tissues. Fragments per kilobase pair of exon model 
per million fragments mapped (FPKM) values were calculated using Cufflinks version 0.9.3 (Trapnell et al., 2010), 
the version 2 (v2) pseudomolecules, and the v2 annotation.

Tissue
Number of purity  

filtered reads
Number of mapped  

reads
Maximum  

FPKM
Number of expressed 

genes†
Number of tissue  
restricted genes‡

Leaves 17.1 million 14.5 million 128,735 21,956 492
Preemergence cob 18.3 million 16.0 million 17,256 23,338 70
Postemergence cob 18.3 million 15.8 million 17,784 23,948 44
Silk 18.9 million 16.8 million 257,614 23,015 138
Ovule 29.9 million 26.3 million 33,621 25,003 108
Preemergence tassel 19.8 million 17.0 million 24,576 25,165 88
Postemergence tassel 18.6 million 16.1 million 35,766 24,984 42
Whole anthers 27.0 million 24.0 million 127,465 22,178 96
Pollen 27.9 million 25.3 million 1,004,070 13,418 206
Seed 5 DAP§ 19.2 million 16.5 million 22,966 24,390 37
Seed 10 DAP 26.4 million 22.9 million 26,927 24,486 105
Embryo 25 DAP 19.9 million 17.0 million 36,127 22,493 188
Endosperm 25 DAP 23.6 million 20.3 million 283,698 22,887 251
†Genes with a 95% confidence interval lower boundary FPKM value greater than zero were considered expressed.
‡Genes were considered tissue restricted when only one tissue within this study had a 95% confidence interval lower boundary FPKM value greater than zero.
§DAP, days after pollination.
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these tissues despite the cob being exclusively maternally 
derived and the seed and embryo being both maternally 
and paternally derived.

Comparative Analysis between RNA Sequencing 
and Microarray Data
We compared our RNA-seq data with a similar, micro-
array-based genome-wide expression dataset from maize 
(Sekhon et al., 2011). $e microarray study assayed gene 
expression in 60 tissues including 11 that are develop-
mentally similar to our RNA-seq tissues; pollen and pos-
temergence tassel were the two samples in the RNA-seq 
dataset without similar tissues in the microarray data. 
Because the microarray data analysis used v1 annota-
tion, we used FPKM values for the RNA-seq libraries 

calculated relative to this gene set as well. Only represen-
tative isoforms were used and all genes with more than 
one predicted isoform were excluded from the analysis. 
$e resulting intersection of genes without predicted iso-
forms and present in both the microarray and RNA-seq 
analyses was 17,573 or 54% of the v1 annotation.

A nonparametric correlation statistic was used to 
compare the RNA-seq and microarray expression data-
sets. Spearman rank correlation coe(cients (SCCs) of 
log2 expression values were calculated between 11 cor-
responding tissue pairs in the two datasets as well as for 
three dissimilar tissue pairs as negative controls (Table 
3). Among the 11 comparisons between similar tissues 
(Table 3), the SCC values ranged from 0.68 to 0.82. $e 
highest correlations (SCC > 0.8) were observed between 
the two stages of cob and in tissues where the develop-
mental stages were systematically measured as DAP, 
including whole seed and embryo. Lower SCC values 
(SCC < 0.8) were observed in leaves, silk, ovule, tassel, 
anther, and endosperm comparisons where developmen-
tal stages and tissue types were slightly di!erent between 
the studies. Overall, correlation coe(cients between 
analogous tissues (0.68 to 0.82) were greater than com-
parisons between dissimilar tissues (0.30 to 0.56) indi-
cating that similar expression patterns for this subset of 
maize genes were detected by the two di!erent platforms.

Scatter plots of log2 expression values from various 
tissue pairs are shown in Fig. 2. $ese plots illustrate a 
primary di!erence between the two expression platforms, 
which is the broader range of expression detected by RNA-
seq compared to microarray (Agarwal et al., 2010) as seen in 
the low-end expression values between the platforms (Fig. 
2). We observed RNA-seq values near zero (FPKM = 1) in 
the entire range of microarray intensity values similar to 
previous comparisons of the two technologies (Marioni et 
al., 2008). $is could be caused by cross-hybridization of the 
oligonucleotide probes to multiple genes and/or background 
noise in the microarray experiments. $is limitation of the 
microarray platform prohibits accurate detection of expres-
sion values for genes belonging to paralogous gene families, 
which are predominant in plant genomes (Spannagl et al., 
2011), underscoring an advantage of RNA-seq for character-
ization of complete transcriptomes.

Gene Expression in Paralogous Gene Families
To investigate paralogous gene expression patterns in 
reproductive tissues, we constructed paralogous gene fam-
ily groups using the OrthoMCL algorithm (Chen et al., 
2007; Li et al., 2003) (Supplemental Table S1). Of the 39,456 
predicted genes in the v2 annotation, approximately 85% 
(33,457) were assigned to 4975 paralogous gene families of 
two or more members. $e distribution of gene family size 
(Fig. 3A) shows that a large number of gene families (1829) 
have two members re#ective of an ancient whole genome 
duplication in maize and previously identi"ed nearly iden-
tical paralogs (Schnable et al., 2011, 2009). $e remaining 
gene families (3029) contain 3 to 30 members with 117 
gene families containing >30 members. $e largest gene 

Figure 1. Correlation matrix of 13 maize ribonucleic acid 
sequencing (RNA-seq) libraries. Normalized transcript abun-
dances for 39,456 genes in the version 2 (v2) annotation were 
calculated in units of fragments per kilobase pair of exon model 
per million fragments mapped (FPKM) with Cufflinks version 0.9.3 
(Trapnell et al., 2010). Pearson product-moment correlations of 
log2 FPKM values were performed for all versus all tissue sam-
ples using SAS (SAS Institute, 2003). The heat map of Pearson 
correlation coefficents was clustered by hierarchical clustering 
with a Pearson correlation distance metric and average linkage 
using Multiple Experiment Viewer Software version 4.5 (Saeed 
et al., 2003). The bootstrap support values shown on tree nodes 
denote the percentage of times a given node was supported over 
1000 resampling trials. DAP, days after pollination; Pre-em, pre-
emergence; Post-em, postemergence.
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family includes 1435 genes, many of which have annota-
tions related to phosphorylation or protein kinase activity. 
For all genes, we compared qualitative gene expression 
levels in our RNA-seq dataset with assignment to gene 
families (Fig. 3B). Of the 6161 single copy genes, 68% had 
measurable expression in one or more tissues compared to 
81% of paralogous genes. Genes classi"ed as not expressed 
in any of our tissues (8217 total) may be expressed in tis-
sues not represented in our study or expressed below our 
detection or sampling limits, annotation artifacts, or 
induced by external stimuli.

It is hypothesized that genes in large gene families 
exhibit more diversi"ed expression patterns than genes 
in smaller gene families due to evolutionary mechanisms 
such as subfunctionalization, neofunctionalization, or 
pseudogenization (Force et al., 1999; Yim et al., 2009). To 
assess the similarity of expression patterns among gene 
family members in the context of #ower and seed develop-
ment, we calculated pairwise Pearson correlations of log2 
FPKM expression values for all gene combinations within 
each family. Distributions of PCC values (Fig. 3C) show 
that as many as 65% of within-family gene pairs are cor-
related at ≥0.5 in two-member families. $is proportion 
steadily decreases as gene family size increases thus sup-
porting this hypothesis. In the largest gene families tested 
(gene family size of 21–30 genes), 31% of gene pairs had 
PCC values greater than or equal to 0.5, which is higher 
than expected among random correlations (15%; Fig. 3C). 
$is suggests that there are subsets of genes within all 
sizes of gene families that have retained conserved expres-
sion patterns in developing #ower and seed tissues.

An example of divergent gene family expression in 
male reproductive tissues is a 15-member gene family 

Table 3. Spearman rank correlations of log2 
expression values between ribonucleic acid sequencing 
(RNA-seq) and microarray based expression profiles. 
Eleven RNA-seq libraries generated in this study were 
compared to the most similar corresponding tissues in 
a maize microarray study (Sekhon et al., 2011). Three 
comparisons of dissimilar tissues were included as 
negative controls. Log2 expression values for a subset 
of 17,573 maize genes from the v1 annotation without 
multiple predicted isoforms and present in both data 
sets were correlated with the nonparametric Spearman 
rank correlation statistic (SAS Institute, 2003).

RNA-seq library† Microarray experiment SCC‡ Tissues types
Leaves (V2) First leaf (V3) 0.76 Similar
Preemergence cob (V15) Immature cob (V18) 0.82 Similar
Postemergence cob (VT) Prepollination cob (R1) 0.81 Similar
Silk (R1) Silks (R1) 0.78 Similar
Ovule (R1) Whole seed 2 DAP§ (R1) 0.79 Similar
Preemergence tassel (V18) Meiotic tassel (V18) 0.68 Similar
Whole anthers (VT) Anthers (R1) 0.74 Similar
Whole seed 5 DAP (R1) Whole seed 4 DAP (R1) 0.80 Similar
Whole seed 10 DAP (R2) Whole seed 10 DAP (R2) 0.81 Similar
Embryo 25 DAP (R4) Embryo 24 DAP (R4) 0.82 Similar
Endosperm 25 DAP (R4) Endosperm 24 DAP (R4) 0.74 Similar
Pollen (VT) Silks (R1) 0.30 Dissimilar
Leaves (V2) Endosperm 24 DAP (R4) 0.51 Dissimilar
Embryo 25 DAP (R4) Anthers (R1) 0.56 Dissimilar
†Vegetative (V) and reproductive (R) growth development stages defined in the Iowa State University 
Extension Corn Field Guide (Abendroth et al., 2011).
‡SCC, Spearman correlation coefficient.
§DAP, days after pollination.

Figure 2. Comparison of ribonucleic acid sequencing (RNA-seq) and microarray expression patterns. Microarray expression profiles 
were obtained from a previous maize atlas experiment (Sekhon et al., 2011). Log2 transformed expression values of 17,573 maize 
genes without predicted isoforms and present in both the RNA-seq (log2 fragments per kilobase pair of exon model per million frag-
ments mapped [FPKM]) and microarray (log2 intensity) platforms are shown as scatter plots. Spearman correlation coefficients (SCCs) 
for the comparisons were determined using SAS (SAS Institute, 2003). DAP, days after pollination.
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annotated as a rapid alkalization factor (RALF; Fig. 3D). 
Five members show high levels of expression in pol-
len consistent with previously described roles for these 
proteins (Covey et al., 2010; Zhang et al., 2010) while the 
remaining members have low levels or complete lack 
of expression in pollen. $ese results demonstrate the 
utility of RNA-seq for deciphering complex expression 
patterns of large gene families in plant transcriptomes. 
More speci"cally, this dataset is valuable for identifying 
particular genes and gene family members involved with 
reproductive organ development in maize.

Differential Expression and Tissue Restricted 
Expression Across Tissues
To understand the global transcriptional pro"le di!er-
ences of functionally diverse maize tissues, we charac-
terized di!erential expression of genes expressed across 
multiple tissues, such as GRMZM2G019404, which 
encodes a plasma membrane adenosine triphosphatase 
(ATPase) (Fig. 4A) that is more expressed in leaves, pre-
emergence tassel, and whole seed 5 DAP compared to 
all other tissues. Understanding di!erences in expres-
sion patterns between tissues provides insights into what 
makes these tissues unique. $e number of di!erentially 
expressed genes between tissues ranged from 2653 (~6.7% 
of the genes in the v2 annotation) for preemergence cob 
versus postemergence cob to 18,962 (~48.1%) for pol-
len versus ovule (Table 4). Not surprisingly, the three 
comparisons with the fewest number of di!erentially 
expressed genes were those between tissues with repeated 
measures including cob (pre- and postemergence), tassel 
(pre- and post emergence), and whole seed (5 and 10 DAP). 
Comparisons between compound tissues and their com-
ponent tissues such as postemergence cob versus ovule 
and ovule versus whole seed 5 DAP were also similar. For 
example, expression of a putative polyphenol oxidase is 
restricted to multiple female tissues including silk, ovule, 
and postemergence cob (Fig. 4B), consistent with its 
proposed role in oxidation of reproductive tissues a%er 
wounding (Sukalovic et al., 2010). Interestingly, 8 of the 
10 pairwise tissue comparisons with the highest number 
of di!erentially expressed genes included pollen and the 
remaining two included whole anthers, a compound tissue 
that contains pollen (Table 4). $is set of genes included a 
putative subtilisin-like protease (GRMZM2G006366; Fig. 
4C) that has a rice (Oryza sativa L.) homolog known to be 
involved in anther development (Yoshida and Kuboyama, 
2001). Due to limitations in the algorithm used for testing 
di!erential expression, genes with an expression value of 
zero in one of the tissues could not be tested. As pollen has 
fewer genes expressed than any other tissue, it also had the 
fewest tests conducted. However, it had the highest (89%) 
percentage of di!erentially expressed genes across all pair-
wise comparisons with the other 12 tissues. Whole anthers 
was the next highest tissue with 77% signi"cant tests; the 
tissue with the lowest percentage of signi"cant tests was 
whole seed 5 DAP with only 57%. $ese results lend sup-
port to the "nding that for the few genes that are expressed 

Figure 3. Distribution and expression of maize genes in paralogous 
families. Using the OrthoMCL algorithm (Li et al., 2003), ~85% 
(33,457) of genes in the version 2 (v2) annotation were assigned to 
4975 paralogous gene families of two or more members. A. Histo-
gram shows the distribution of 4975 gene families. B. All maize genes 
are shown relative to their gene family assignment and qualitative 
presence or absence expression level. Genes with low confidence 
fragments per kilobase pair of exon model per million fragments 
mapped (FPKM) values equal to zero (defined by Cufflinks [Trapnell 
et al., 2010]) were defined as not expressed. C. Pairwise correlations 
of log2 FPKM expression values for genes within the same gene fam-
ily were calculated, and Pearson correlation coefficients (PCCs) are 
summarized by gene family size. Distributions are shown compared 
to a set of random correlations. D. An example of gene family expres-
sion patterns is shown for a 15-member family of genes annotated as 
rapid alkalinization factors (RALFs). DAP, days after pollination; Pre-
em, preemergence; Post-em, postemergence.
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in pollen relative to the other tissues (Table 2), the global 
expression patterns of those genes are grossly di!erent 
than that in the other vegetative and reproductive tissues.

In addition to di!erential expression between tis-
sues, tissue exclusive or restricted gene expression is 
involved in distinguishing form and function of cells and 
ultimately whole tissues (Aoyama et al., 1995; Lafos et 
al., 2011; Lauter et al., 2005). Leaves had the most genes 
(492) with expression restricted to a single tissue within 
this study (Table 1; Supplemental Table S3). Exclud-
ing leaves, endosperm 25 DAP (251 genes), pollen (206 
genes), and embryo 25 DAP (188 genes) had the most 
genes with expression restricted to a single tissue within 
this study (Table 1). An example of endosperm restricted 
expression within the tissues in this study is shown 
with GRMZM2G118205, which encodes a polycomb 
protein (Fig. 4D) known to be involved with imprinting 
processes in maternal tissues (Jullien and Berger, 2009). 
$ese di!erentially expressed genes and genes with 
expression restricted to a single tissue within this study 
are strong candidates for further analysis to resolve the 
molecular basis of maize #ower and grain development.

Gene Coexpression Networks in Maize 
Reproductive Tissues

Gene network analysis is o%en performed with gene 
expression data to identify possible relationships between 
genes. Typically, gene networks are created based on cor-
relation values derived from gene expression levels across 
a series of treatments or conditions. Although de"ni-
tive interactions cannot be concluded from correlation 
analyses, gene networks do o%en re#ect true biological 
relationships (Borghi et al., 2010; Ma et al., 2007; Mao et 
al., 2009; Mutwil et al., 2010; Ren et al., 2010; Xin et al., 
2009). Here, we have used WGCNA to generate a corre-
lation-based gene coexpression network and to identify 
modules of genes where all members of a module are 
more highly correlated with each other than they are to 
genes outside the module (Zhang and Horvath, 2005).

$e 8751 genes that passed the CV "lter, and thus 
have variation across tissues, were used for network analy-
sis. Of the 8751 genes, a total of 6347 were assigned to 17 
gene modules that contained between 49 and 1645 genes 
each and 2404 genes were not assigned to any module 
(Fig. 5; Supplemental Table S1). To visualize the expression 

Figure 4. Visualization of ribonucleic acid sequencing (RNA-seq) short read mapping relative to maize gene models. Wiggle tracks 
indicating chromosomal positions of mapped reads were generated using the wiggles program within TopHat version 1.2.0 (Trapnell 
et al., 2009) and visualized with the Integrated Genome Browser (Nicol et al., 2009). The maize gene track represents genes in the 
version 2 (v2) annotation. Figure panels show selected genes with A. differential expression, B. female exclusive expression, C. male 
exclusive expression, and D. seed exclusive expression. The y axes indicate number of reads mapped. Numbers to the right of the wig-
gle tracks represent the normalized fragments per kilobase pair of exon model per million fragments mapped (FPKM) expression values 
for each tissue calculated by Cufflinks (Trapnell et al., 2010). ATPase, adenosine triphosphatase; DAP, days after pollination; Pre-em, 
preemergence; Post-em, postemergence.



200 THE PLANT GENOME  NOVEMBER 2011  VOL. 4, NO. 3

patterns of the genes in each module, eigengenes for each 
module were calculated and displayed in a heat map 
(Langfelder and Horvath, 2007) (Fig. 5). $e eigengene 
analysis indicates that each coexpression module repre-
sents a set of genes that are strongly expressed in only one 
or, at most, a few developmentally related tissues. $e gene 
coexpression modules suggest relationships between larger 
tissue subgroups described in previous sections (Table 1; 
Fig. 1). For example, module 13 contains a large number of 
genes that are expressed in pre- and postemergence cobs 
as well as ovules and 25 DAP embryos. $e coexpression 
analyses also highlight notable di!erences between similar 
tissues. Module 9 and module 10 contain relatively small 
numbers of genes that are almost exclusively expressed in 
either preemergence or postemergence cobs. Module 8 is 
the largest module with 1645 genes expressed in all male 
tissues sampled here while modules 2 through 5 each con-
tain many fewer genes that are speci"cally expressed in 
preemergence tassels, postemergence tassels, anthers, and 
pollen, respectively.

A total of 121 previously characterized maize genes 
were found within 13 gene modules (Supplemental Table 
S4), and many are known to have tissue-speci"c expression 
similar to the patterns seen in the modules. For example, pol-
len extensin-like1, a pollen-speci"c cell wall extension gene 
(Rubinstein et al., 1995), was identi"ed within module 8 that 

contains genes that are expressed in pollen containing male 
tissues. $e gene viviparous1 codes for a transcription factor 
involved in seed development and maturation (Suzuki et al., 
2003) and is a member of the 25 DAP embryo-speci"c mod-
ule 16. Module 9 contains genes that are strongly expressed in 
preemergence cob tissue including the ramosa1 gene, which 
is a transcription factor that regulates early in#orescence 
development (Gallavotti et al., 2010). $e identi"cation of a 
number of known genes in coexpression modules that reca-
pitulate expected expression patterns of those genes provides 
evidence for the biological relevance of these gene modules. 
Furthermore, the network analysis performed here provides 
a powerful tool for identifying candidate genes involved in 
related developmental pathways.

Conclusions
Ribonucleic acid sequencing-based expression pro"ling 
provides a unique opportunity to explore the transcrip-
tional diversity among tissues on a global level. In this 
study, we have explored RNA-seq based transcriptional 
pro"les for 12 reproductive tissues and one vegetative 
tissue in maize. Dramatic di!erences in whole transcrip-
tome expression patterns were observed between these 
tissues, in particular for pollen, a tissue that is known to 
be unique both in terms of form and function.

Table 4. Number of differentially expressed genes between each set of tissues. Differential expression analysis 
was conducted using the cuffdiff program in Cufflinks version 0.9.3 (Trapnell et al., 2010), the version 2 (v2) 
pseudomolecules, the v2 annotation, and false discovery rate of 0.01.

 
Preemergence 

cob
Postemergence 

cob Silk Ovule
Preemergence 

tassel
Postemergence 

tassel
Whole
anthers Pollen

Seed 5 
DAP†

Seed 10 
DAP

Embryo 25 
DAP

Endosperm 
25 DAP

Leaves 14,541 
(75%)‡

14,195  
(73%)

12,547 
(69%)

14,930 
(70%)

13,361  
(70%)

12,795  
(70%)

13,510 
(83%)

13,578 
(90%)

13,294 
(69%)

14,022 
(70%)

14,551 
(77%)

13,793 
(76%)

Preemergence cob 2653  
(15%)

12,202 
(63%)

8393  
(41%)

13,677  
(67%)

14,184  
(70%)

15,664 
(80%)

16,942 
(90%)

10,869 
(56%)

11,365 
(57%)

9186  
(50%)

12,527 
(66%)

Postemergence cob 11,543 
(60%)

6493 
(32%)

12,869  
(63%)

13,460  
(67%)

15,494 
(79%)

16,972 
(90%)

9496 
(50%)

10,519 
(53%)

8689  
(47%)

11,953  
(63%)

Silk 11,049 
(53%)

10,809  
(56%)

11,123  
(58%)

14,145 
(76%)

15,966 
(89%)

8781  
(47%)

8694  
(45%)

13,123 
(69%)

12,623 
(68%)

Ovule 12,263  
(57%)

12,961  
(60%)

16,316 
(76%)

18,962 
(90%)

8296 
(40%)

10,472 
(50%)

11,189 
(54%)

12,649  
(61%)

Preemergence tassel 3522  
(19%)

12,514 
(68%)

16,117 
(88%)

10,160 
(51%)

11,425 
(56%)

13,691 
(68%)

12,444 
(64%)

Postemergence tassel 11,301 
(66%)

14,942 
(87%)

10,743 
(55%)

11,972 
(58%)

14,059 
(71%)

12,891 
(68%)

Whole anthers 9386 
(83%)

14,811 
(76%)

15,470 
(76%)

15,161 
(81%)

14,293 
(80%)

Pollen 17,029 
(90%)

17,886 
(90%)

15,841 
(90%)

15,275 
(90%)

Seed 5 DAP 4810 
(25%)

12,169 
(63%)

12,083 
(64%)

Seed 10 DAP 12,930 
(65%)

12,533 
(64%)

Embryo 25 DAP 11,088 
(62%)

†DAP, days after pollination.
‡Numbers in parenthesis indicate the percent of significantly different tests out of the total number of tests that could be performed for each pairwise comparison.
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In a comparative analysis with a previous microar-
ray based expression study, we demonstrated the relative 
advantages of RNA-seq including a broader range of 
expression values and the ability to di!erentiate expres-
sion of paralogous genes. $e capacity to distinguish 
members of genes families is of critical importance in 
plant species such as maize where the majority of genes 
are in paralogous families. $rough the use of RNA-seq 
we were able to identify diverged expression patterns 
and genes with expression restricted to a single tissue as 
determined in this study within these families.

Using gene coexpression network analysis, we identi"ed 
modules of genes that are expressed in very speci"c stages of 
#oral development as well as genes that are more generally 
expressed across multiple male, female, or seed tissues. $ese 
analyses, as well as the di!erential gene expression and tissue 
restricted expression analyses, provide a core set of candidate 
genes for future analysis to further characterize maize repro-
ductive development and grain yield potential.

Supplemental Information Available
Supplemental material is available free of charge at http://
www.crops.org/publications/tpg.
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